Temporal Data Performance Optimization using Preprocessing Layer
نویسندگان
چکیده
منابع مشابه
Improving the Performance of ICA Algorithm for fMRI Simulated Data Analysis Using Temporal and Spatial Filters in the Preprocessing Phase
Introduction: The accuracy of analyzing Functional MRI (fMRI) data is usually decreases in the presence of noise and artifact sources. A common solution in for analyzing fMRI data having high noise is to use suitable preprocessing methods with the aim of data denoising. Some effects of preprocessing methods on the parametric methods such as general linear model (GLM) have previously been evalua...
متن کاملimproving the performance of ica algorithm for fmri simulated data analysis using temporal and spatial filters in the preprocessing phase
introduction: the accuracy of analyzing functional mri (fmri) data is usually decreases in the presence of noise and artifact sources. a common solution in for analyzing fmri data having high noise is to use suitable preprocessing methods with the aim of data denoising. some effects of preprocessing methods on the parametric methods such as general linear model (glm) have previously been evalua...
متن کاملOptimization of miRNA-seq data preprocessing
The past two decades of microRNA (miRNA) research has solidified the role of these small non-coding RNAs as key regulators of many biological processes and promising biomarkers for disease. The concurrent development in high-throughput profiling technology has further advanced our understanding of the impact of their dysregulation on a global scale. Currently, next-generation sequencing is the ...
متن کاملEvaluating subject specific preprocessing choices in multisubject fMRI data sets using data-driven performance metrics.
This study investigated the possible benefit of subject specific optimization of preprocessing strategies in functional magnetic resonance imaging (fMRI) experiments. The optimization was performed using the data-driven performance metrics developed recently [Neuroimage 15 (2002), 747]. We applied numerous preprocessing strategies and a multivariate statistical analysis to each of the 20 subjec...
متن کاملData Preprocessing for Liver Dataset Using SMOTE
-The class imbalanced problem occurs in various disciplines when one of target classes has a small number of instances compare to other classes. A classifier normally ignores or neglects to detect a minority class due to the small number of class instances. It poses a challenge to any classifier as it becomes hard to learn the minority class samples. Most of the oversampling methods may generat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Information Systems Engineering & Management
سال: 2018
ISSN: 2468-4376
DOI: 10.20897/jisem.201813